Advertisement

Kidney-on-a-chip: untapped opportunities

  • Nureddin Ashammakhi
    Correspondence
    Correspondence: Nureddin Ashammakhi, Department of Surgery, Oulu University Hospital, P.O. Box 22, Oulu 90210, Finland.
    Affiliations
    Division of Plastic Surgery, Department of Surgery, Oulu University Hospital, Oulu, Finland

    Biotechnology Research Center, Libyan Authority for Research, Science and Technology, Tripoli, Libya
    Search for articles by this author
  • Katherine Wesseling-Perry
    Affiliations
    Division of Nephrology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
    Search for articles by this author
  • Anwarul Hasan
    Correspondence
    Anwarul Hasan, Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar.
    Affiliations
    Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
    Search for articles by this author
  • Elmahdi Elkhammas
    Affiliations
    Division of Transplantation Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Comprehensive Transplant Center, Columbus, Ohio, USA
    Search for articles by this author
  • Yu Shrike Zhang
    Affiliations
    Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
    Search for articles by this author
Published:October 23, 2018DOI:https://doi.org/10.1016/j.kint.2018.06.034
      The organs-on-a-chip technology has shown strong promise in mimicking the complexity of native tissues in vitro and ex vivo, and recently significant advances have been made in applying this technology to studies of the kidney and its diseases. Individual components of the nephron, including the glomerulus, proximal tubule, and distal tubule/medullary collecting duct, have been successfully mimicked using organs-on-a-chip technology and yielding strong promises in advancing the field of ex vivo drug toxicity testing and augmenting renal replacement therapies. Although these models show promise over 2-dimensional cell systems in recapitulating important nephron features in vitro, nephron functions, such as tubular secretion, intracellular metabolism, and renin and vitamin D production, as well as prostaglandin synthesis are still poorly recapitulated in on-chip models. Moreover, construction of multiple-renal-components-on-a-chip models, in which various structures and cells of the renal system interact with each other, has remained a challenge. Overall, on-chip models show promise in advancing models of normal and pathological renal physiology, in predicting nephrotoxicity, and in advancing treatment of chronic kidney diseases.

      Keywords

      To read this article in full you will need to make a payment
      ISN Member Login
      Login with your ISN username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hegab H.M.
        • Elmekawy A.
        • Stakenborg T.
        Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation.
        Biomicrofluidics. 2013; 7: 21502
        • Sanechika N.
        • Sawada K.
        • Usui Y.
        • et al.
        Development of bioartificial renal tubule devices with lifespan-extended human renal proximal tubular epithelial cells.
        Nephrol Dial Transplant. 2011; 26: 2761-2769
        • Mackay S.
        • Funke A.
        • Buffington D.
        • Humes H.
        Tissue engineering of a bioartificial renal tubule.
        ASAIO J. 1998; 44: 179-183
        • Jang K.
        • Suh K.
        A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
        Lab Chip. 2010; 10: 36-42
        • Hartung T.
        Toxicology for the twenty-first century.
        Nature. 2009; 460: 208-212
        • Jenkinson S.
        • Chung G.
        • van Loon E.
        • et al.
        The limitations of renal epithelial cell line HK-2 as a model of drug transporter expression and function in the proximal tubule.
        Pflugers Arch. 2012; 464: 601-611
        • Jang K.J.
        • Mehr A.P.
        • Hamilton G.A.
        • et al.
        Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment.
        Integr Biol (Camb). 2013; 5: 1119-1129
        • Wilmer M.J.
        • Ng C.P.
        • Lanz H.L.
        • et al.
        Kidney-on-a-chip technology for drug-induced nephrotoxicity screening.
        Trends Biotechnol. 2016; 34: 156-170
        • Dehne E.M.
        • Hasenberg T.
        • Marx U.
        The ascendance of microphysiological systems to solve the drug testing dilemma.
        Future Sci OA. 2017; 3: FSO185
        • Oleaga C.
        • Bernabini C.
        • Smith A.S.T.
        • et al.
        Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs.
        Sci Rep. 2016; 6: 20030
        • Webb S.
        Cells in the third dimension.
        Biotechniques. 2017; 62: 93-98
        • Homan K.A.
        • Kolesky D.B.
        • Skylar-Scott M.A.
        • et al.
        Bioprinting of 3D convoluted renal proximal tubules on perfusable chips.
        Sci Rep. 2016; 6: 34845
        • Baudoin R.
        • Griscom L.
        • Monge M.
        • et al.
        Development of a renal microchip for in vitro distal tubule models.
        Biotechnol Progr. 2007; 23: 1245-1253
        • Musah S.
        • Mammoto A.
        • Ferrante T.C.
        • et al.
        Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip.
        Nat Biomed Eng. 2017; 1 (article number: 0069)
      1. Organ-on-chip market analysis & trends—organ (heart-on-chip, human-on-chip, intestine-on-chip, kidney-on-chip, liver-on-chip, lung-on-chip), application—forecast to 2025. PR Newswire. January 18, 2017. Available at: https://www.prnewswire.com/news-releases/organ-on-chip-market-analysis--trends---organ-heart-on-chip-human-on-chip-intestine-on-chip-kidney-on-chip-liver-on-chip-lung-on-chip-application---forecast-to-2025-300393217.html.

        • Whitesides G.M.
        The origins and the future of microfluidics.
        Nature. 2006; 442: 368-373
        • Ugolini G.S.
        • Visone R.
        • Redaelli A.
        • et al.
        Generating multicompartmental 3D biological constructs interfaced through sequential injections in microfluidic devices.
        Adv Healthc Mater. 2017; 6
        • Lind JU
        • Busbee T.A.
        • Valentine A.D.
        • et al.
        Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing.
        Nat Mater. 2017; 16: 303-308
        • Volpatti L.R.
        • Yetisen A.K.
        Commercialization of microfluidic devices.
        Trends Biotechnol. 2014; 32: 347
        • Yang Q.
        • Lian Q.
        • Xu F.
        Perspective: fabrication of integrated organ-on-a-chip via bioprinting.
        Biomicrofluidics. 2017; 11
        • Zhang C.
        • Zhao Z.
        • Abdul Rahim N.A.
        • et al.
        Towards a human-on-chip: culturing multiple cell types on a chip with compartmentalized microenvironments.
        Lab Chip. 2009; 9: 3185
        • Huh D.
        • Torisawa Y.S.
        • Hamilton G.A.
        • et al.
        Microengineered physiological biomimicry: organs-on-chips.
        Lab Chip. 2012; 12: 2156-2164
        • Mu X.
        • Zheng W.
        • Xiao L.
        • et al.
        Engineering a 3D vascular network in hydrogel for mimicking a nephron.
        Lab Chip. 2013; 13: 1612
        • Ferrell N.
        • Desai R.R.
        • Fleischman A.J.
        • et al.
        A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells.
        Biotechnol Bioeng. 2010; 107: 707-716
        • Kim S.
        • LesherPerez S.C.
        • Kim B.C.
        • et al.
        Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip.
        Biofabrication. 2016; 8: 015021
        • Ozgen N.
        • Terashima M.
        • Aung T.
        • et al.
        Evaluation of long-term transport ability of a bioartificial renal tubule device using LLC-PK1 cells.
        Nephrol Dial Transplant. 2004; 19: 2198-2207
        • Ferrell N.
        • Ricci K.B.
        • Groszek J.
        • et al.
        Albumin handling by renal tubular epithelial cells in a microfluidic bioreactor.
        Biotechnol Bioeng. 2012; 109: 797-803
        • Shen C.
        • Zhang G.
        • Wang Q.
        • Meng Q.
        Fabrication of collagen gel hollow fibers by covalent cross-linking for construction of bioengineering renal tubules.
        ACS Appl Mater Interfaces. 2015; 7: 19789
        • Adler M.
        • Ramm S.
        • Hafner M.
        • et al.
        A quantitative approach to screen for nephrotoxic compounds in vitro.
        J Am Soc Nephrol. 2016; 27: 1015-1028
        • Narayanan K.
        • Schumacher K.M.
        • Tasnim F.
        • et al.
        Human embryonic stem cells differentiate into functional renal proximal tubular-like cells.
        Kidney Int. 2013; 83: 593-603
        • Ashammakhi N.
        • Elkhammas E.
        • Hasan A.
        Glomerulus-on-a-chip: life up.
        Transplantation. 2017; 101: e343-e344
        • Allison S.J.
        Bioengineering: kidney glomerulus-on-a-chip.
        Nat Rev Nephrol. 2017; 13: 382
        • Freedman B.S.
        • Brooks C.R.
        • Lam A.Q.
        • et al.
        Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids.
        Nat Commun. 2015; 6: 8715
        • Mata A.
        • Fleischman A.
        • Roy S.
        Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems.
        Biomed Microdevices. 2005; 7: 281-293
        • van Poll M.L.
        • Zhou F.
        • Ramstedt M.
        • et al.
        A self-assembly approach to chemical micropatterning of poly(dimethylsiloxane).
        Angew Chem Int ed. 2007; 46: 6634-6637
        • Toepke M.W.
        • Beebe D.J.
        PDMS absorption of small molecules and consequences in microfluidic applications.
        Lab Chip. 2006; 6: 1484-1486
        • Wang J.
        • Douville N.
        • Takayama S.
        • ElSayed M.
        Quantitative analysis of molecular absorption into PDMS microfluidic channels.
        Ann Biomed Eng. 2012; 40: 1862-1873
        • Halldorsson S.
        • Lucumi E.
        • Gómez-Sjöberg R.
        • Fleming R.M.T.
        Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.
        Biosens Bioelectron. 2015; 63: 218-231
        • Nge P.N.
        • Rogers C.I.
        • Woolley A.T.
        Advances in microfluidic materials: functions, integration, and applications.
        Chem Rev. 2013; 113: 2550
        • Hasan A.
        • Paul A.
        • Memic A.
        • Khademhosseini A.
        A multilayered microfluidic blood vessel-like structure.
        Biomed Microdevices. 2015; 17: 1-13
        • Ng C.P.
        • Zhuang Y.
        • Lin A.W.H.
        • Teo J.C.M.
        A fibrin-based tissue-engineered renal proximal tubule for bioartificial kidney devices: development, characterization and in vitro transport study.
        Int J Tissue Eng. 2013; (article ID 319476)
        • Snouber L.C.
        • Letourneur F.
        • Chafey P.
        • et al.
        Analysis of transcriptomic and proteomic profiles demonstrates improved Madin-Darby canine kidney cell function in a renal microfluidic biochip.
        Biotechnol Progr. 2012; 28: 474-484
        • Choucha Snouber L.
        • Jacques S.
        • Monge M.
        • et al.
        Transcriptomic analysis of the effect of ifosfamide on MDCK cells cultivated in microfluidic biochips.
        Genomics. 2012; 100: 27-34
        • Sciancalepore A.G.
        • Sallustio F.
        • Girardo S.
        • et al.
        A bioartificial renal tubule device embedding human renal stem/progenitor cells.
        PLoS One. 2014; 9: e87496
        • Weber E.J.
        • Chapron A.
        • Chapron B.D.
        • et al.
        Development of a microphysiological model of human kidney proximal tubule function.
        Kidney Int. 2016; 90: 627-637
        • Jansen J.
        • Fedecostante M.
        • Wilmer M.J.
        • et al.
        Bioengineered kidney tubules efficiently excrete uremic toxins.
        Sci Rep. 2016; 6: 26715
        • Vernetti L.
        • Gough A.
        • Baetz N.
        • et al.
        Functional coupling of human microphysiology systems: intestine, liver, kidney proximal tubule, blood-brain barrier and skeletal muscle.
        Sci Rep. 2017; 7: 42296
        • Li Z.
        • Su W.
        • Zhu Y.
        • et al.
        Drug absorption related nephrotoxicity assessment on an intestine-kidney chip.
        Biomicrofluidics. 2017; 11: 034114
        • Zhou M.
        • Zhang X.
        • Wen X.
        • et al.
        Development of a functional glomerulus at the organ level on a chip to mimic hypertensive nephropathy.
        Sci Rep. 2016; 6: 31771
        • Weinberg E.
        • Kaazempur-Mofrad M.
        • Borenstein J.
        Concept and computational design for a bioartificial nephron-on-a-chip.
        Int J Artif Organs. 2008; 31: 508
      2. Kaazempur-Mofrad MR, Vacanti JP, Krebs NJ, Borenstein JT. A MEMS based renal replacement system. Paper presented at: Solid-State Sensor, Actuator, and Microsystems Workshop. June 6–10, 2004; Hilton Head Island, SC.

        • Wang L.
        • Tao T.
        • Su W.
        • et al.
        A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice.
        Lab Chip. 2017; 17: 1749-1760
        • Jameson J.L.
        • Loscalzo J.
        Harrison’s Nephrology and Acid-Base Disorders.
        McGraw-Hill, New York2010
        • Shen C.
        • Meng Q.
        • Zhang G.
        Increased curvature of hollow fiber membranes could up-regulate differential functions of renal tubular cell layers.
        Biotechnol Bioeng. 2013; 110: 2173-2183
        • Wang B.
        • Gray G.
        Concordance of noncarcinogenic endpoints in rodent chemical bioassays.
        Risk Anal. 2015; 35: 1154-1166
        • Redfern W.S.
        • Ewart L.
        • Hammond T.G.
        • et al.
        Impact and frequency of different toxicities throughout the pharmaceutical life cycle.
        Toxicologist. 2010; 114: 1081
        • Naughton C.A.
        Drug-induced nephrotoxicity.
        Am Fam Phys. 2008; 78: 743-750
        • Tiong H.Y.
        • Huang P.
        • Xiong S.
        • et al.
        Drug-induced nephrotoxicity: clinical impact and preclinical in vitro models.
        Mol Pharm. 2014; 11: 1933-1948
        • Perazella M.A.
        Renal vulnerability to drug toxicity.
        Clin J Am Soc Nephrol. 2009; 4: 1275-1283
        • Schetz M.
        • Dasta J.
        • Goldstein S.
        • Golper T.
        Drug induced acute kidney injury.
        Curr Opin Crit Care. 2005; 11: 555-565
        • Yao X.
        • Panichpisal K.
        • Kurtzman N.
        • Nugent K.
        Cisplatin nephrotoxicity: a review.
        Am J Med Sci. 2007; 334: 115-124
        • Kimura H.
        • Sakai Y.
        • Fujii T.
        Organ/body-on-a-chip based on microfluidic technology for drug discovery.
        Drug Metab Pharmacokinet. 2018; 33: 43-48
        • Hansell P.
        • Welch W.J.
        • Blantz R.C.
        • Palm F.
        Determinants of kidney oxygen consumption and their relationship to tissue oxygen tension in diabetes and hypertension.
        Clin Exp Pharmacol Physiol. 2013; 40: 123-137
        • Evans R.G.
        • Gardiner B.S.
        • Smith D.W.
        • O’Connor P.M.
        Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis.
        Am Physiol Renal Physiol. 2008; 295: 1259-1270
        • Yasotharan S.
        • Pinto S.
        • Sled J.G.
        • et al.
        Artery-on-a-chip platform for automated, multimodal assessment of cerebral blood vessel structure and function.
        Lab Chip. 2015; 15: 2660-2669
        • Cho S.
        • Yoon J.
        Organ-on-a-chip for assessing environmental toxicants.
        Curr Opin Biotechnol. 2017; 45: 34-42
        • Maschmeyer I.
        • Lorenz A.K.
        • Schimek K.
        • et al.
        A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents.
        Lab Chip. 2015; 15: 2688-2699
        • Tumlin J.
        Efficacy and safety of renal tubule cell therapy for acute renal failure.
        J Am Soc Nephrol. 2008; 19: 1034-1040
        • Pino C.
        • Westover A.
        • Buffington D.
        • Humes H.
        Bioengineered renal cell therapy device for clinical translation.
        ASAIO J. 2017; 63: 305-315
        • Westover A.J.
        • Buffington D.A.
        • Johnston K.A.
        • et al.
        A bio-artificial renal epithelial cell system conveys survival advantage in a porcine model of septic shock.
        J Tissue Eng Regen Med. 2017; 11: 649-657
        • Tumlin J.A.
        • Galphin C.M.
        • Tolwani A.J.
        • et al.
        A multi-center, randomized, controlled, pivotal study to assess the safety and efficacy of a selective cytopheretic device in patients with acute kidney injury.
        PLoS One. 2015; 10 (e0132482)
        • Anna S.L.
        Droplets and bubbles in microfluidic devices.
        Ann Rev Fluid Mech. 2016; 48: 285-309
        • Stone H.A.
        • Stroock A.D.
        • Ajdari A.
        Engineering flows in small devices: microfluidic toward a lab-on-a-chip.
        Ann Rev Fluid Mech. 2004; 36: 381
        • Shin S.R.
        • Kilic T.
        • Zhang Y.S.
        • et al.
        Label-free and regenerative electrochemical microfluidic biosensors for continual monitoring of cell secretomes.
        Adv Sci (Weinh). 2017; 4: 1600522
        • Henry O.Y.F.
        • Villenave R.
        • Cronce M.J.
        • et al.
        Organs-on-chips with integrated electrodes for trans-epithelial electrical resistance (TEER) measurements of human epithelial barrier function.
        Lab Chip. 2017; 17: 2264-2271
        • Oedit A.
        • Vulto P.
        • Ramautar R.
        • et al.
        Lab-on-a-chip hyphenation with mass spectrometry: strategies for bioanalytical applications.
        Curr Opin Biotechnol. 2015; 31: 79-85
        • Maoz B.M.
        • Herland A.
        • Henry O.Y.F.
        • et al.
        Organs-on-chips with combined multi-electrode array and transepithelial electrical resistance measurement capabilities.
        Lab Chip. 2017; 17: 2294-2302
        • Ashammakhi N.
        • Kaarela O.
        Stimuli-responsive biomaterials: next wave.
        J Craniofac Surg. 2017; 28: 1647-1648
        • Lu Y.
        • Aimetti A.A.
        • Langer R.
        • Gu Z.
        Bioresponsive materials.
        Nat Rev Mater. 2016; 2: 16075
        • Hasan A.
        • Nurunnabi M.
        • Morshed M.
        • et al.
        Recent advances in application of biosensors in tissue engineering.
        Biomed Res Int. 2014; 2014: 307519
        • Wikswo J.P.
        Looking to the future of organs-on-chips: interview with Professor John Wikswo.
        Future Sci OA. 2017; 3: FSO163
        • Zhang J.
        • Rodriguez V.
        • Xu F.
        • Li X.J.
        Stem cell culture and differentiation in microfluidic devices towards organ-on-a-chip.
        Future Sci OA. 2017; 3: FSO187
        • Luni C.
        • Giulitti S.
        • Serena E.
        • et al.
        High-efficiency cellular reprogramming with microfluidics.
        Nat Methods. 2016; 13: 446-452
        • Ma X.
        • Qu X.
        • Zhu W.
        • et al.
        Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting.
        Proc Nat Acad Sci. 2016; 113: 2206-2211
        • Liu J.
        • Hwang H.H.
        • Wang P.
        • et al.
        Direct 3D-printing of cell-laden constructs in microfluidic architectures.
        Lab Chip. 2016; 16: 1430-1438
        • Tumbleston J.R.
        • Shirvanyants D.
        • Ermoshkin N.
        • et al.
        Additive manufacturing: continuous liquid interface production of 3D objects.
        Science. 2015; 347: 1349
        • Tibbits S.
        4D printing: multi-material shape change.
        Arch Design. 2014; 84: 116-121
        • Li Y.C.
        • Zhang Y.C.
        • Akpek Y.S.
        • et al.
        4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.
        Biofabrication. 2016; 9: 012001
        • Gladman A.S.
        • Matsumoto E.A.
        • Nuzzo R.G.
        • et al.
        Biomimetic 4D printing.
        Nat Mater. 2016; 15: 413
        • Huh D.D.
        A human breathing lung-on-a-chip.
        Ann Am Thorac Soc. 2015; 12: S42-S44
        • Banaeiyan A.A.
        • Theobald J.
        • Paukštyte J.
        • et al.
        Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform.
        Biofabrication. 2017; 9: 015014
        • Ribas J.
        • Zhang Y.S.
        • Pitrez P.R.
        • et al.
        Biomechanical strain exacerbates inflammation on a progeria-on-a-chip model.
        Small. 2017; 13
        • Zhang Y.S.
        • Davoudi F.
        • Walch P.
        • et al.
        Bioprinted thrombosis-on-a-chip.
        Lab Chip. 2016; 16: 4097-4105
        • Xu Z.
        • Li E.
        • Guo Z.
        • et al.
        Design and construction of a multi-organ microfluidic chip mimicking the in vivo microenvironment of lung cancer metastasis.
        ACS Appl Mater Interfaces. 2016; 8: 25840-25847
        • Yoon H.J.
        • Shanker A.
        • Wang Y.
        • et al.
        Tunable thermal-sensitive polymer-graphene oxide composite for efficient capture and release of viable circulating tumor cells.
        Adv Mater. 2016; 28: 4891-4897