Advertisement

Crosstalk between the nervous system and the kidney

  • Shinji Tanaka
    Affiliations
    Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
    Search for articles by this author
  • Mark D. Okusa
    Correspondence
    Correspondence: Mark D. Okusa, Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, P.O. Box 800133, Charlottesville, Virginia 22908, USA.
    Affiliations
    Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
    Search for articles by this author
Published:November 22, 2019DOI:https://doi.org/10.1016/j.kint.2019.10.032
      Under physiological states, the nervous system and the kidneys communicate with each other to maintain normal body homeostasis. However, pathological states disrupt this interaction as seen in hypertension, and kidney damage can cause impaired renorenal reflex and sodium handling. In acute kidney injury (AKI) and chronic kidney disease (CKD), damaged kidneys can have a detrimental effect on the central nervous system. CKD is an independent risk factor for cerebrovascular disease and cognitive impairment, and many factors, including retention of uremic toxins and phosphate, have been proposed as CKD-specific factors responsible for structural and functional cerebral changes in patients with CKD. However, more studies are needed to determine the precise pathogenesis. Epidemiological studies have shown that AKI is associated with a subsequent risk for developing stroke and dementia. However, recent animal studies have shown that the renal nerve contributes to kidney inflammation and fibrosis, whereas activation of the cholinergic anti-inflammatory pathway, which involves the vagus nerve, the splenic nerve, and immune cells in the spleen, has a significant renoprotective effect. Therefore, elucidating mechanisms of communication between the nervous system and the kidney enables us not only to develop new strategies to ameliorate neurological conditions associated with kidney disease but also to design safe and effective clinical interventions for kidney disease, using the neural and neuroimmune control of kidney injury and disease.

      Keywords

      To read this article in full you will need to make a payment
      ISN Member Login
      Login with your ISN username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Coresh J.
        • Selvin E.
        • Stevens L.A.
        • et al.
        Prevalence of chronic kidney disease in the United States.
        JAMA. 2007; 298: 2038-2047
        • United States Renal Data System
        2006 Annual Report. Chapter 6: Morbidity & mortality. Neuroepidemiology: incident & prevalent stroke.
        (Available at:) (Accessed August 30, 2019)
        • Kurella M.
        • Chertow G.M.
        • Fried L.F.
        • et al.
        Chronic kidney disease and cognitive impairment in the elderly: the health, aging, and body composition study.
        J Am Soc Nephrol. 2005; 16: 2127-2133
        • Yaffe K.
        • Ackerson L.
        • Kurella Tamura M.
        • et al.
        Chronic kidney disease and cognitive function in older adults: findings from the chronic renal insufficiency cohort cognitive study.
        J Am Geriatr Soc. 2010; 58: 338-345
        • Chertow G.M.
        • Burdick E.
        • Honour M.
        • et al.
        Acute kidney injury, mortality, length of stay, and costs in hospitalized patients.
        J Am Soc Nephrol. 2005; 16: 3365-3370
        • Susantitaphong P.
        • Cruz D.N.
        • Cerda J.
        • et al.
        World incidence of AKI: a meta-analysis.
        Clin J Am Soc Nephrol. 2013; 8: 1482-1493
        • Grams M.E.
        • Rabb H.
        The distant organ effects of acute kidney injury.
        Kidney Int. 2012; 81: 942-948
        • Wu V.C.
        • Wu P.C.
        • Wu C.H.
        • et al.
        • National Taiwan University Study Group on Acute Renal Failure (NSARF) Group
        The impact of acute kidney injury on the long-term risk of stroke.
        J Am Heart Assoc. 2014; 3
        • Guerra C.
        • Linde-Zwirble W.T.
        • Wunsch H.
        Risk factors for dementia after critical illness in elderly Medicare beneficiaries.
        Crit Care. 2012; 16: R233
        • Tsai H.H.
        • Yen R.F.
        • Lin C.L.
        • Kao C.H.
        Increased risk of dementia in patients hospitalized with acute kidney injury: a nationwide population-based cohort study.
        PLoS One. 2017; 12e0171671
        • Robertson G.L.
        Physiology of ADH secretion.
        Kidney Int Suppl. 1987; 21: S20-S26
        • Antunes-Rodrigues J.
        • de Castro M.
        • Elias L.L.
        • et al.
        Neuroendocrine control of body fluid metabolism.
        Physiol Rev. 2004; 84: 169-208
        • Agre P.
        • Homer W.
        Smith award lecture. Aquaporin water channels in kidney.
        J Am Soc Nephrol. 2000; 11: 764-777
        • Kopp U.C.
        Role of renal sensory nerves in physiological and pathophysiological conditions.
        Am J Physiol Regul Integr Comp Physiol. 2015; 308: R79-R95
        • Marfurt C.F.
        • Echtenkamp S.F.
        Sensory innervation of the rat kidney and ureter as revealed by the anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) from dorsal root ganglia.
        J Comp Neurol. 1991; 311: 389-404
        • Genovesi S.
        • Pieruzzi F.
        • Wijnmaalen P.
        • et al.
        Renal afferents signaling diuretic activity in the cat.
        Circ Res. 1993; 73: 906-913
        • Kopp U.C.
        • Smith L.A.
        • Pence A.L.
        Na(+)-K(+)-ATPase inhibition sensitizes renal mechanoreceptors activated by increases in renal pelvic pressure.
        Am J Physiol. 1994; 267: R1109-R1117
        • Barajas L.
        • Liu L.
        • Powers K.
        Anatomy of the renal innervation: intrarenal aspects and ganglia of origin.
        Can J Physiol Pharmacol. 1992; 70: 735-749
        • Colindres R.E.
        • Spielman W.S.
        • Moss N.G.
        • et al.
        Functional evidence for renorenal reflexes in the rat.
        Am J Physiol. 1980; 239: F265-F270
        • Kopp U.C.
        • Olson L.A.
        • DiBona G.F.
        Renorenal reflex responses to mechano- and chemoreceptor stimulation in the dog and rat.
        Am J Physiol. 1984; 246: F67-F77
        • Kopp U.C.
        • Smith L.A.
        Inhibitory renorenal reflexes: a role for substance P or other capsaicin-sensitive neurons.
        Am J Physiol. 1991; 260: R232-R239
        • Kopp U.C.
        • Smith L.A.
        Role of prostaglandins in renal sensory receptor activation by substance P and bradykinin.
        Am J Physiol. 1993; 265: R544-R551
        • Kopp U.C.
        • Cicha M.Z.
        • Smith L.A.
        • et al.
        Dietary sodium modulates the interaction between efferent and afferent renal nerve activity by altering activation of alpha2-adrenoceptors on renal sensory nerves.
        Am J Physiol Regul Integr Comp Physiol. 2011; 300: R298-R310
        • Kopp U.C.
        • Cicha M.Z.
        • Smith L.A.
        • et al.
        Renal sympathetic nerve activity modulates afferent renal nerve activity by PGE2-dependent activation of alpha1- and alpha2-adrenoceptors on renal sensory nerve fibers.
        Am J Physiol Regul Integr Comp Physiol. 2007; 293: R1561-R1572
        • Niijima A.
        The effect of efferent discharges in renal nerves on the activity of arterial mechanoreceptors in the kidney in rabbit.
        J Physiol. 1972; 222: 335-343
        • Kopp U.C.
        • Cicha M.Z.
        • Smith L.A.
        Endogenous angiotensin modulates PGE(2)-mediated release of substance P from renal mechanosensory nerve fibers.
        Am J Physiol Regul Integr Comp Physiol. 2002; 282: R19-R30
        • Kopp U.C.
        • Cicha M.Z.
        • Smith L.A.
        Angiotensin blocks substance P release from renal sensory nerves by inhibiting PGE2-mediated activation of cAMP.
        Am J Physiol Renal Physiol. 2003; 285 (F472–F283)
        • Kopp U.C.
        • Grisk O.
        • Cicha M.Z.
        • et al.
        Dietary sodium modulates the interaction between efferent renal sympathetic nerve activity and afferent renal nerve activity: role of endothelin.
        Am J Physiol Regul Integr Comp Physiol. 2009; 297: R337-R351
        • Kopp U.C.
        • Cicha M.Z.
        • Smith L.A.
        Differential effects of endothelin on activation of renal mechanosensory nerves: stimulatory in high-sodium diet and inhibitory in low-sodium diet.
        Am J Physiol Regul Integr Comp Physiol. 2006; 291: R1545-R1556
        • Malpas S.C.
        Sympathetic nervous system overactivity and its role in the development of cardiovascular disease.
        Physiol Rev. 2010; 90: 513-557
        • Johns E.J.
        • Kopp U.C.
        • DiBona G.F.
        Neural control of renal function.
        Compr Physiol. 2011; 1: 731-767
        • Kopp U.C.
        • Cicha M.Z.
        • Farley D.M.
        • et al.
        Renal substance P-containing neurons and substance P receptors impaired in hypertension.
        Hypertension. 1998; 31: 815-822
        • Kopp U.C.
        • Smith L.A.
        Bradykinin and protein kinase C activation fail to stimulate renal sensory neurons in hypertensive rats.
        Hypertension. 1996; 27: 607-612
        • Kopp U.C.
        • Smith L.A.
        • DiBona G.F.
        Impaired renorenal reflexes in spontaneously hypertensive rats.
        Hypertension. 1987; 9: 69-75
        • Kopp U.C.
        • Cicha M.Z.
        • Smith L.A.
        Impaired interaction between efferent and afferent renal nerve activity in SHR involves increased activation of alpha2-adrenoceptors.
        Hypertension. 2011; 57: 640-647
        • DiBona G.F.
        • Jones S.Y.
        • Kopp U.C.
        Renal mechanoreceptor dysfunction: an intermediate phenotype in spontaneously hypertensive rats.
        Hypertension. 1999; 33: 472-475
        • Kopp U.C.
        • Cicha M.Z.
        Impaired substance P release from renal sensory nerves in SHR involves a pertussis toxin-sensitive mechanism.
        Am J Physiol Regul Integr Comp Physiol. 2004; 286: R326-R333
        • Kopp U.C.
        • Cicha M.Z.
        • Yorek M.A.
        Impaired responsiveness of renal sensory nerves in streptozotocin-treated rats and obese Zucker diabetic fatty rats: role of angiotensin.
        Am J Physiol Regul Integr Comp Physiol. 2008; 294: R858-R866
        • Kopp U.C.
        • Cicha M.Z.
        • Smith L.A.
        Impaired responsiveness of renal mechanosensory nerves in heart failure: role of endogenous angiotensin.
        Am J Physiol Regul Integr Comp Physiol. 2003; 284: R116-R124
        • Chien C.T.
        • Fu T.C.
        • Wu M.S.
        • Chen C.F.
        Attenuated response of renal mechanoreceptors to volume expansion in chronically hypoxic rats.
        Am J Physiol. 1997; 273: F712-F717
        • Ma M.C.
        • Huang H.S.
        • Chen C.F.
        Impaired renal sensory responses after unilateral ureteral obstruction in the rat.
        J Am Soc Nephrol. 2002; 13: 1008-1016
        • Ma M.C.
        • Huang H.S.
        • Chien C.T.
        • et al.
        Temporal decrease in renal sensory responses in rats after chronic ligation of the bile duct.
        Am J Physiol Renal Physiol. 2002; 283: F164-F172
        • Ma M.C.
        • Huang H.S.
        • Wu M.S.
        • et al.
        Impaired renal sensory responses after renal ischemia in the rat.
        J Am Soc Nephrol. 2002; 13: 1872-1883
        • Kopp U.C.
        • Buckley-Bleiler R.L.
        Impaired renorenal reflexes in two-kidney, one clip hypertensive rats.
        Hypertension. 1989; 14: 445-452
        • Katholi R.E.
        • Hageman G.R.
        • Whitlow P.L.
        • Woods W.T.
        Hemodynamic and afferent renal nerve responses to intrarenal adenosine in the dog.
        Hypertension. 1983; 5: I149-I154
        • Katholi R.E.
        • Whitlow P.L.
        • Hageman G.R.
        • Woods W.T.
        Intrarenal adenosine produces hypertension by activating the sympathetic nervous system via the renal nerves in the dog.
        J Hypertens. 1984; 2: 349-359
        • Bhatt D.L.
        • Kandzari D.E.
        • O’Neill W.W.
        • et al.
        A controlled trial of renal denervation for resistant hypertension.
        N Engl J Med. 2014; 370: 1393-1401
        • Esler M.D.
        • Krum H.
        • Schlaich M.
        • et al.
        Renal sympathetic denervation for treatment of drug-resistant hypertension: one-year results from the Symplicity HTN-2 randomized, controlled trial.
        Circulation. 2012; 126: 2976-2982
        • Kandzari D.E.
        • Bhatt D.L.
        • Brar S.
        • et al.
        Predictors of blood pressure response in the SYMPLICITY HTN-3 trial.
        Eur Heart J. 2015; 36: 219-227
        • Symplicity H.T.N.I.
        Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months.
        Hypertension. 2011; 57: 911-917
        • Ito S.
        • Nagasawa T.
        • Abe M.
        • Mori T.
        Strain vessel hypothesis: a viewpoint for linkage of albuminuria and cerebro-cardiovascular risk.
        Hypertens Res. 2009; 32: 115-121
        • Chen Y.C.
        • Su Y.C.
        • Lee C.C.
        • et al.
        Chronic kidney disease itself is a causal risk factor for stroke beyond traditional cardiovascular risk factors: a nationwide cohort study in Taiwan.
        PLoS One. 2012; 7e36332
        • Koren-Morag N.
        • Goldbourt U.
        • Tanne D.
        Renal dysfunction and risk of ischemic stroke or TIA in patients with cardiovascular disease.
        Neurology. 2006; 67: 224-228
        • Lee M.
        • Saver J.L.
        • Chang K.H.
        • et al.
        Low glomerular filtration rate and risk of stroke: meta-analysis.
        BMJ. 2010; 341: c4249
        • Ninomiya T.
        • Perkovic V.
        • Verdon C.
        • et al.
        Proteinuria and stroke: a meta-analysis of cohort studies.
        Am J Kidney Dis. 2009; 53: 417-425
        • Debette S.
        • Markus H.S.
        The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis.
        BMJ. 2010; 341: c3666
        • Khatri M.
        • Wright C.B.
        • Nickolas T.L.
        • et al.
        Chronic kidney disease is associated with white matter hyperintensity volume: the Northern Manhattan Study (NOMAS).
        Stroke. 2007; 38: 3121-3126
        • Weiner D.E.
        • Bartolomei K.
        • Scott T.
        • et al.
        Albuminuria, cognitive functioning, and white matter hyperintensities in homebound elders.
        Am J Kidney Dis. 2009; 53: 438-447
        • Seliger S.L.
        • Siscovick D.S.
        • Stehman-Breen C.O.
        • et al.
        Moderate renal impairment and risk of dementia among older adults: the Cardiovascular Health Cognition Study.
        J Am Soc Nephrol. 2004; 15: 1904-1911
        • Watanabe K.
        • Watanabe T.
        • Nakayama M.
        Cerebro-renal interactions: impact of uremic toxins on cognitive function.
        Neurotoxicology. 2014; 44: 184-193
        • De Deyn P.P.
        • Vanholder R.
        • D’Hooge R.
        Nitric oxide in uremia: effects of several potentially toxic guanidino compounds.
        Kidney Int Suppl. 2003; : S25-S28
        • D’Hooge R.
        • Van de Vijver G.
        • Van Bogaert P.P.
        • et al.
        Involvement of voltage- and ligand-gated Ca2+ channels in the neuroexcitatory and synergistic effects of putative uremic neurotoxins.
        Kidney Int. 2003; 63: 1764-1775
        • Kielstein J.T.
        • Donnerstag F.
        • Gasper S.
        • et al.
        ADMA increases arterial stiffness and decreases cerebral blood flow in humans.
        Stroke. 2006; 37: 2024-2029
        • Kielstein H.
        • Suntharalingam M.
        • Perthel R.
        • et al.
        Role of the endogenous nitric oxide inhibitor asymmetric dimethylarginine (ADMA) and brain-derived neurotrophic factor (BDNF) in depression and behavioural changes: clinical and preclinical data in chronic kidney disease.
        Nephrol Dial Transplant. 2015; 30: 1699-1705
        • Khan U.
        • Hassan A.
        • Vallance P.
        • Markus H.S.
        Asymmetric dimethylarginine in cerebral small vessel disease.
        Stroke. 2007; 38: 411-413
        • Six I.
        • Maizel J.
        • Barreto F.C.
        • et al.
        Effects of phosphate on vascular function under normal conditions and influence of the uraemic state.
        Cardiovasc Res. 2012; 96: 130-139
        • Jono S.
        • McKee M.D.
        • Murry C.E.
        • et al.
        Phosphate regulation of vascular smooth muscle cell calcification.
        Circ Res. 2000; 87: E10-E17
        • Steitz S.A.
        • Speer M.Y.
        • Curinga G.
        • et al.
        Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers.
        Circ Res. 2001; 89: 1147-1154
        • Speer M.Y.
        • Yang H.Y.
        • Brabb T.
        • et al.
        Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries.
        Circ Res. 2009; 104: 733-741
        • Tyson K.L.
        • Reynolds J.L.
        • McNair R.
        • et al.
        Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification.
        Arterioscler Thromb Vasc Biol. 2003; 23: 489-494
        • Li X.
        • Yang H.Y.
        • Giachelli C.M.
        Role of the sodium-dependent phosphate cotransporter, Pit-1, in vascular smooth muscle cell calcification.
        Circ Res. 2006; 98: 905-912
        • Crouthamel M.H.
        • Lau W.L.
        • Leaf E.M.
        • et al.
        Sodium-dependent phosphate cotransporters and phosphate-induced calcification of vascular smooth muscle cells: redundant roles for PiT-1 and PiT-2.
        Arterioscler Thromb Vasc Biol. 2013; 33: 2625-2632
        • Marebwa B.K.
        • Adams R.J.
        • Magwood G.S.
        • et al.
        Fibroblast growth factor23 is associated with axonal integrity and neural network architecture in the human frontal lobes.
        PLoS One. 2018; 13e0203460
        • Wright C.B.
        • Dong C.
        • Stark M.
        • et al.
        Plasma FGF23 and the risk of stroke: the Northern Manhattan Study (NOMAS).
        Neurology. 2014; 82: 1700-1706
        • Wright C.B.
        • Shah N.H.
        • Mendez A.J.
        • et al.
        Fibroblast growth factor 23 is associated with subclinical cerebrovascular damage: the Northern Manhattan Study.
        Stroke. 2016; 47: 923-928
        • Muteliefu G.
        • Enomoto A.
        • Jiang P.
        • et al.
        Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells.
        Nephrol Dial Transplant. 2009; 24: 2051-2058
        • Adijiang A.
        • Goto S.
        • Uramoto S.
        • et al.
        Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats.
        Nephrol Dial Transplant. 2008; 23: 1892-1901
        • Stinghen A.E.
        • Chillon J.M.
        • Massy Z.A.
        • Boullier A.
        Differential effects of indoxyl sulfate and inorganic phosphate in a murine cerebral endothelial cell line (bEnd.3).
        Toxins (Basel). 2014; 6: 1742-1760
        • Fujisaki K.
        • Tsuruya K.
        • Yamato M.
        • et al.
        Cerebral oxidative stress induces spatial working memory dysfunction in uremic mice: neuroprotective effect of tempol.
        Nephrol Dial Transplant. 2014; 29: 529-538
        • Deng G.
        • Vaziri N.D.
        • Jabbari B.
        • et al.
        Increased tyrosine nitration of the brain in chronic renal insufficiency: reversal by antioxidant therapy and angiotensin-converting enzyme inhibition.
        J Am Soc Nephrol. 2001; 12: 1892-1899
        • Shroff R.
        • Speer T.
        • Colin S.
        • et al.
        HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype.
        J Am Soc Nephrol. 2014; 25: 2658-2668
        • Zewinger S.
        • Speer T.
        • Kleber M.E.
        • et al.
        HDL cholesterol is not associated with lower mortality in patients with kidney dysfunction.
        J Am Soc Nephrol. 2014; 25: 1073-1082
        • Speer T.
        • Rohrer L.
        • Blyszczuk P.
        • et al.
        Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2.
        Immunity. 2013; 38: 754-768
        • Holzer M.
        • Birner-Gruenberger R.
        • Stojakovic T.
        • et al.
        Uremia alters HDL composition and function.
        J Am Soc Nephrol. 2011; 22: 1631-1641
        • Liu M.
        • Liang Y.
        • Chigurupati S.
        • et al.
        Acute kidney injury leads to inflammation and functional changes in the brain.
        J Am Soc Nephrol. 2008; 19: 1360-1370
        • Salama M.
        • Farrag S.M.
        • abulasrar Sa
        • et al.
        Up-regulation of TLR-4 in the brain after ischemic kidney-induced encephalopathy in the rat.
        CNS Neurol Disord Drug Targets. 2013; 12: 583-586
        • Doi K.
        • Ishizu T.
        • Tsukamoto-Sumida M.
        • et al.
        The high-mobility group protein B1-Toll-like receptor 4 pathway contributes to the acute lung injury induced by bilateral nephrectomy.
        Kidney Int. 2014; 86: 316-326
        • Adachi N.
        • Lei B.
        • Deshpande G.
        • et al.
        Uraemia suppresses central dopaminergic metabolism and impairs motor activity in rats.
        Intensive Care Med. 2001; 27: 1655-1660
        • Hassoun H.T.
        • Grigoryev D.N.
        • Lie M.L.
        • et al.
        Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy.
        Am J Physiol Renal Physiol. 2007; 293: F30-F40
        • Karimi Z.
        • Ketabchi F.
        • Alebrahimdehkordi N.
        • et al.
        Renal ischemia/reperfusion against nephrectomy for induction of acute lung injury in rats.
        Ren Fail. 2016; 38: 1503-1515
        • Akcay A.
        • Nguyen Q.
        • Edelstein C.L.
        Mediators of inflammation in acute kidney injury.
        Mediators Inflamm. 2009; 2009: 137072
        • Kim J.
        • Padanilam B.J.
        Renal nerves drive interstitial fibrogenesis in obstructive nephropathy.
        J Am Soc Nephrol. 2013; 24: 229-242
        • Kim J.
        • Padanilam B.J.
        Renal denervation prevents long-term sequelae of ischemic renal injury.
        Kidney Int. 2015; 87: 350-358
        • Fujii T.
        • Kurata H.
        • Takaoka M.
        • et al.
        The role of renal sympathetic nervous system in the pathogenesis of ischemic acute renal failure.
        Eur J Pharmacol. 2003; 481: 241-248
        • Ogawa T.
        • Mimura Y.
        • Kaminishi M.
        Renal denervation abolishes the protective effects of ischaemic preconditioning on function and haemodynamics in ischaemia-reperfused rat kidneys.
        Acta Physiol Scand. 2002; 174: 291-297
        • Veelken R.
        • Vogel E.M.
        • Hilgers K.
        • et al.
        Autonomic renal denervation ameliorates experimental glomerulonephritis.
        J Am Soc Nephrol. 2008; 19: 1371-1378
        • Mathis K.W.
        • Venegas-Pont M.
        • Flynn E.R.
        • et al.
        Hypertension in an experimental model of systemic lupus erythematosus occurs independently of the renal nerves.
        Am J Physiol Regul Integr Comp Physiol. 2013; 305: R711-R719
        • Bernik T.R.
        • Friedman S.G.
        • Ochani M.
        • et al.
        Pharmacological stimulation of the cholinergic antiinflammatory pathway.
        J Exp Med. 2002; 195: 781-788
        • Kramer A.A.
        • Postler G.
        • Salhab K.F.
        • et al.
        Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability.
        Kidney Int. 1999; 55: 2362-2367
        • Rosas-Ballina M.
        • Ochani M.
        • Parrish W.R.
        • et al.
        Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia.
        Proc Natl Acad Sci U S A. 2008; 105: 11008-11013
        • Bellinger D.L.
        • Felten S.Y.
        • Lorton D.
        • Felten D.L.
        Origin of noradrenergic innervation of the spleen in rats.
        Brain Behav Immun. 1989; 3: 291-311
        • Berthoud H.R.
        • Powley T.L.
        Characterization of vagal innervation to the rat celiac, suprarenal and mesenteric ganglia.
        J Auton Nerv Syst. 1993; 42: 153-169
        • Berthoud H.R.
        • Powley T.L.
        Interaction between parasympathetic and sympathetic nerves in prevertebral ganglia: morphological evidence for vagal efferent innervation of ganglion cells in the rat.
        Microsc Res Tech. 1996; 35: 80-86
        • Li M.
        • Galligan J.
        • Wang D.
        • Fink G.
        The effects of celiac ganglionectomy on sympathetic innervation to the splanchnic organs in the rat.
        Auton Neurosci. 2010; 154: 66-73
        • Nance D.M.
        • Burns J.
        Innervation of the spleen in the rat: evidence for absence of afferent innervation.
        Brain Behav Immun. 1989; 3: 281-290
        • Bratton B.O.
        • Martelli D.
        • McKinley M.J.
        • et al.
        Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons.
        Exp Physiol. 2012; 97: 1180-1185
        • Martelli D.
        • McKinley M.J.
        • McAllen R.M.
        The cholinergic anti-inflammatory pathway: a critical review.
        Auton Neurosci. 2014; 182: 65-69
        • Rosas-Ballina M.
        • Olofsson P.S.
        • Ochani M.
        • et al.
        Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit.
        Science. 2011; 334: 98-101
        • Wang H.
        • Yu M.
        • Ochani M.
        • et al.
        Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation.
        Nature. 2003; 421: 384-388
        • Meroni E.
        • Stakenborg N.
        • Gomez-Pinilla P.J.
        • et al.
        Functional characterization of oxazolone-induced colitis and survival improvement by vagus nerve stimulation.
        PLoS One. 2018; 13e0197487
        • Inoue T.
        • Abe C.
        • Sung S.S.
        • et al.
        Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through alpha7nAChR+ splenocytes.
        J Clin Invest. 2016; 126: 1939-1952
        • Matteoli G.
        • Gomez-Pinilla P.J.
        • Nemethova A.
        • et al.
        A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen.
        Gut. 2014; 63: 938-948
        • Bassi G.S.
        • Dias D.P.M.
        • Franchin M.
        • et al.
        Modulation of experimental arthritis by vagal sensory and central brain stimulation.
        Brain Behav Immun. 2017; 64: 330-343
        • Komegae E.N.
        • Farmer D.G.S.
        • Brooks V.L.
        • et al.
        Vagal afferent activation suppresses systemic inflammation via the splanchnic anti-inflammatory pathway.
        Brain Behav Immun. 2018; 73: 441-449
        • Hoeger S.
        • Bergstraesser C.
        • Selhorst J.
        • et al.
        Modulation of brain dead induced inflammation by vagus nerve stimulation.
        Am J Transplant. 2010; 10: 477-489
        • Hoeger S.
        • Fontana J.
        • Jarczyk J.
        • et al.
        Vagal stimulation in brain dead donor rats decreases chronic allograft nephropathy in recipients.
        Nephrol Dial Transplant. 2014; 29: 544-549
        • Gigliotti J.C.
        • Huang L.
        • Bajwa A.
        • et al.
        Ultrasound modulates the splenic neuroimmune axis in attenuating AKI.
        J Am Soc Nephrol. 2015; 26: 2470-2481
        • Gigliotti J.C.
        • Huang L.
        • Ye H.
        • et al.
        Ultrasound prevents renal ischemia-reperfusion injury by stimulating the splenic cholinergic anti-inflammatory pathway.
        J Am Soc Nephrol. 2013; 24: 1451-1460
        • Wasilczuk K.M.
        • Bayer K.C.
        • Somann J.P.
        • et al.
        Modulating the inflammatory reflex in rats using low-intensity focused ultrasound stimulation of the vagus nerve.
        Ultrasound Med Biol. 2019; 45: 481-489
        • Zachs D.P.
        • Offutt S.J.
        • Graham R.S.
        • et al.
        Noninvasive ultrasound stimulation of the spleen to treat inflammatory arthritis.
        Nat Commun. 2019; 10: 951
        • Cotero V.
        • Fan Y.
        • Tsaava T.
        • et al.
        Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation.
        Nat Commun. 2019; 10: 952
        • Abe C.
        • Inoue T.
        • Inglis M.A.
        • et al.
        C1 neurons mediate a stress-induced anti-inflammatory reflex in mice.
        Nat Neurosci. 2017; 20: 700-707
        • Guyenet P.G.
        • Stornetta R.L.
        • Bochorishvili G.
        • et al.
        C1 neurons: the body’s EMTs.
        Am J Physiol Regul Integr Comp Physiol. 2013; 305: R187-R204
        • Doi K.
        • Rabb H.
        Impact of acute kidney injury on distant organ function: recent findings and potential therapeutic targets.
        Kidney Int. 2016; 89: 555-564
        • Gigliotti J.C.
        • Okusa M.D.
        The spleen: the forgotten organ in acute kidney injury of critical illness.
        Nephron Clin Pract. 2014; 127: 153-157
        • Mandal A.K.
        • Haygood C.C.
        • Bell R.D.
        • et al.
        Effects of acute and chronic splenectomy on experimental acute renal tubular lesions.
        J Lab Clin Med. 1978; 92: 698-711
        • Mandal A.K.
        The spleen and acute renal failure: mechanisms of renal protection by splenectomy: involvement of prostaglandins.
        Prostaglandins Leukot Med. 1982; 9: 85-107
        • Mandal A.K.
        • Taylor C.A.
        • Bell R.D.
        • et al.
        Erythrocyte deformation in ischemic acute tubular necrosis and amelioration by splenectomy in the dog.
        Lab Invest. 1991; 65: 566-576
        • Bell R.D.
        • Mandal A.K.
        Increased hematocrit mitigates ischemic renal damage in the splenectomized dog.
        Am J Med Sci. 1989; 297: 169-173
        • Burne-Taney M.J.
        • Liu M.
        • Baldwin W.M.
        • et al.
        Decreased capacity of immune cells to cause tissue injury mediates kidney ischemic preconditioning.
        J Immunol. 2006; 176: 7015-7020
        • Burne-Taney M.J.
        • Liu M.
        • Ascon D.
        • et al.
        Transfer of lymphocytes from mice with renal ischemia can induce albuminuria in naive mice: a possible mechanism linking early injury and progressive renal disease?.
        Am J Physiol Renal Physiol. 2006; 291: F981-F986
        • Carnevale D.
        • Pallante F.
        • Fardella V.
        • et al.
        The angiogenic factor PlGF mediates a neuroimmune interaction in the spleen to allow the onset of hypertension.
        Immunity. 2014; 41: 737-752
        • Carnevale D.
        • Perrotta M.
        • Pallante F.
        • et al.
        A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication.
        Nat Commun. 2016; 7: 13035
        • Xiao L.
        • Kirabo A.
        • Wu J.
        • et al.
        Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension.
        Circ Res. 2015; 117: 547-557
        • Vasamsetti S.B.
        • Florentin J.
        • Coppin E.
        • et al.
        Sympathetic neuronal activation triggers myeloid progenitor proliferation and differentiation.
        Immunity. 2018; 49: 93-106.e7
        • Inoue T.
        • Abe C.
        • Kohro T.
        • et al.
        Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney.
        Kidney Int. 2019; 95: 563-576
        • Hu X.
        • Chung A.Y.
        • Wu I.
        • et al.
        Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways.
        Immunity. 2008; 29: 691-703
        • Shang Y.
        • Coppo M.
        • He T.
        • et al.
        The transcriptional repressor Hes1 attenuates inflammation by regulating transcription elongation.
        Nat Immunol. 2016; 17: 930-937
        • Bonaz B.
        • Sinniger V.
        • Hoffmann D.
        • et al.
        Chronic vagus nerve stimulation in Crohn’s disease: a 6-month follow-up pilot study.
        Neurogastroenterol Motil. 2016; 28: 948-953
        • Meregnani J.
        • Clarencon D.
        • Vivier M.
        • et al.
        Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease.
        Auton Neurosci. 2011; 160: 82-89
        • Sun P.
        • Zhou K.
        • Wang S.
        • et al.
        Involvement of MAPK/NF-kappaB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation.
        PLoS One. 2013; 8e69424
        • Levine Y.A.
        • Koopman F.A.
        • Faltys M.
        • et al.
        Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis.
        PLoS One. 2014; 9e104530
        • Koopman F.A.
        • Chavan S.S.
        • Miljko S.
        • et al.
        Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis.
        Proc Natl Acad Sci U S A. 2016; 113: 8284-8289
        • Yeboah M.M.
        • Xue X.
        • Duan B.
        • et al.
        Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats.
        Kidney Int. 2008; 74: 62-69
        • Chatterjee P.K.
        • Yeboah M.M.
        • Solanki M.H.
        • et al.
        Activation of the cholinergic anti-inflammatory pathway by GTS-21 attenuates cisplatin-induced acute kidney injury in mice.
        PLoS One. 2017; 12e0188797
        • Chatterjee P.K.
        • Yeboah M.M.
        • Dowling O.
        • et al.
        Nicotinic acetylcholine receptor agonists attenuate septic acute kidney injury in mice by suppressing inflammation and proteasome activity.
        PLoS One. 2012; 7e35361
        • Tanaka S.
        • Okusa M.D.
        Optogenetics in understanding mechanisms of acute kidney injury.
        Nephron. 2018; 140: 152-155