Advertisement

Glomerular endothelial cell-podocyte stresses and crosstalk in structurally normal kidney transplants

Published:December 21, 2021DOI:https://doi.org/10.1016/j.kint.2021.11.031
      Increased podocyte detachment begins immediately after kidney transplantation and is associated with long-term allograft failure. We hypothesized that cell-specific transcriptional changes in podocytes and glomerular endothelial cells after transplantation would offer mechanistic insights into the podocyte detachment process. To test this, we evaluated cell-specific transcriptional profiles of glomerular endothelial cells and podocytes from 14 patients of their first-year surveillance biopsies with normal histology from low immune risk recipients with no post-transplant complications and compared these to biopsies of 20 healthy living donor controls. Glomerular endothelial cells from these surveillance biopsies were enriched for genes related to fluid shear stress, angiogenesis, and interferon signaling. In podocytes, pathways were enriched for genes in response to growth factor signaling and actin cytoskeletal reorganization but also showed evidence of podocyte stress as indicated by reduced nephrin (adhesion protein) gene expression. In parallel, transcripts coding for proteins required to maintain podocyte adherence to the underlying glomerular basement membrane were downregulated, including the major glomerular podocyte integrin α3 and the actin cytoskeleton-related gene synaptopodin. The reduction in integrin α3 protein expression in surveillance biopsies was confirmed by immunoperoxidase staining. The combined growth and stress response of patient allografts post-transplantation paralleled similar changes in a rodent model of nephrectomy-induced glomerular hypertrophic stress that progress to develop proteinuria and glomerulosclerosis with shortened kidney life span. Thus, even among patients with apparently healthy allografts with no detectable histologic abnormality including alloimmune injury, transcriptomic changes reflecting cell stresses are already set in motion that could drive hypertrophy-associated glomerular disease progression.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment
      ISN Member Login
      Login with your ISN username and password.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kasiske B.L.
        • Snyder J.J.
        • Gilbertson D.
        Inadequate donor size in cadaver kidney transplantation.
        J Am Soc Nephrol. 2002; 13: 2152-2159
        • Naik A.S.
        • Sakhuja A.
        • Cibrik D.M.
        • et al.
        The impact of obesity on allograft failure after kidney transplantation: a competing risks analysis.
        Transplantation. 2016; 100: 1963-1969
        • Giral M.
        • Foucher Y.
        • Karam G.
        • et al.
        Kidney and recipient weight incompatibility reduces long-term graft survival.
        J Am Soc Nephrol. 2010; 21: 1022-1029
        • Einecke G.
        • Sis B.
        • Reeve J.
        • et al.
        Antibody-mediated microcirculation injury is the major cause of late kidney transplant failure.
        Am J Transplant. 2009; 9: 2520-2531
        • Naik A.S.
        • Afshinnia F.
        • Aqeel J.
        • et al.
        Accelerated podocyte detachment early after kidney transplantation is related to long-term allograft loss of function.
        Nephrol Dial Transplant. 2019; 34: 1232-1239
        • Gaston R.S.
        • Cecka J.M.
        • Kasiske B.L.
        • et al.
        Evidence for antibody-mediated injury as a major determinant of late kidney allograft failure.
        Transplantation. 2010; 90: 68-74
        • Naik A.S.
        • Afshinnia F.
        • Cibrik D.
        • et al.
        Quantitative podocyte parameters predict human native kidney and allograft half-lives.
        JCI Insight. 2016; 1e86943
        • Nankivell B.J.
        • Borrows R.J.
        • Fung C.L.
        • et al.
        The natural history of chronic allograft nephropathy.
        N Engl J Med. 2003; 349: 2326-2333
        • Stegall M.D.
        • Cornell L.D.
        • Park W.D.
        • et al.
        Renal allograft histology at 10 years after transplantation in the tacrolimus era: evidence of pervasive chronic injury.
        Am J Transplant. 2018; 18: 180-188
        • Yang Y.
        • Hodgin J.B.
        • Afshinnia F.
        • et al.
        The two kidney to one kidney transition and transplant glomerulopathy: a podocyte perspective.
        J Am Soc Nephrol. 2015; 26: 1450-1465
        • Naik A.S.
        • Aqeel J.
        • Wang S.Q.
        • et al.
        Urine marker analysis identifies evidence for persistent glomerular podocyte injury across allograft lifespan.
        Clin Transplant. 2021; 35: e14457
        • Bosma R.J.
        • Kwakernaak A.J.
        • van der Heide J.J.
        • et al.
        Body mass index and glomerular hyperfiltration in renal transplant recipients: cross-sectional analysis and long-term impact.
        Am J Transplant. 2007; 7: 645-652
        • Arazi A.
        • Rao D.A.
        • Berthier C.C.
        • et al.
        The immune cell landscape in kidneys of patients with lupus nephritis.
        Nat Immunol. 2019; 20: 902-914
        • Menon R.
        • Otto E.A.
        • Hoover P.
        • et al.
        Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker.
        JCI Insight. 2020; 5e133267
        • Butler A.
        • Hoffman P.
        • Smibert P.
        • et al.
        Integrating single-cell transcriptomic data across different conditions, technologies, and species.
        Nat Biotechnol. 2018; 36: 411-420
        • Greene C.S.
        • Krishnan A.
        • Wong A.K.
        • et al.
        Understanding multicellular function and disease with human tissue-specific networks.
        Nat Genet. 2015; 47: 569-576
        • Krishnan A.
        • Zhang R.
        • Yao V.
        • et al.
        Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder.
        Nat Neurosci. 2016; 19: 1454-1462
        • Nishizono R.
        • Kikuchi M.
        • Wang S.Q.
        • et al.
        FSGS as an adaptive response to growth-induced podocyte stress.
        J Am Soc Nephrol. 2017; 28: 2931-2945
        • Cabello-Aguilar S.
        • Alame M.
        • Kon-Sun-Tack F.
        • et al.
        SingleCellSignalR: inference of intercellular networks from single-cell transcriptomics.
        Nucleic Acids Res. 2020; 48: e55
        • Menon R.
        • Otto E.A.
        • Sealfon R.
        • et al.
        SARS-CoV-2 receptor networks in diabetic and COVID-19–associated kidney disease.
        Kidney Int. 2020; 98: 1502-1518
        • Haas M.
        • Loupy A.
        • Lefaucheur C.
        • et al.
        The Banff 2017 Kidney Meeting Report: revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials.
        Am J Transplant. 2018; 18: 293-307
        • Fukuda A.
        • Wickman L.T.
        • Venkatareddy M.P.
        • et al.
        Urine podocin:nephrin mRNA ratio (PNR) as a podocyte stress biomarker.
        Nephrol Dial Transpl. 2012; 27: 4079-4087
        • Siddiqi F.S.
        • Advani A.
        Endothelial-podocyte crosstalk: the missing link between endothelial dysfunction and albuminuria in diabetes.
        Diabetes. 2013; 62: 3647-3655
        • Lee L.K.
        • Meyer T.W.
        • Pollock A.S.
        • Lovett D.H.
        Endothelial cell injury initiates glomerular sclerosis in the rat remnant kidney.
        J Clin Invest. 1995; 96: 953-964
        • Zhong F.
        • Mallipattu S.K.
        • Estrada C.
        • et al.
        Reduced kruppel-like factor 2 aggravates glomerular endothelial cell injury and kidney disease in mice with unilateral nephrectomy.
        Am J Pathol. 2016; 186: 2021-2031
        • Kang D.H.
        • Joly A.H.
        • Oh S.W.
        • et al.
        Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1.
        J Am Soc Nephrol. 2001; 12: 1434-1447
        • Sato W.
        • Tanabe K.
        • Kosugi T.
        • et al.
        Selective stimulation of VEGFR2 accelerates progressive renal disease.
        Am J Pathol. 2011; 179: 155-166
        • Tao J.
        • Mariani L.
        • Eddy S.
        • et al.
        JAK-STAT signaling is activated in the kidney and peripheral blood cells of patients with focal segmental glomerulosclerosis.
        Kidney Int. 2018; 94: 795-808
        • Marrero M.B.
        • Banes-Berceli A.K.
        • Stern D.M.
        • Eaton D.C.
        Role of the JAK/STAT signaling pathway in diabetic nephropathy.
        Am J Physiol Renal Physiol. 2006; 290: F762-F768
        • Tao J.
        • Mariani L.
        • Eddy S.
        • et al.
        JAK-STAT activity in peripheral blood cells and kidney tissue in IgA nephropathy.
        Clin J Am Soc Nephrol. 2020; 15: 973-982
        • Benigni A.
        • Gagliardini E.
        • Tomasoni S.
        • et al.
        Selective impairment of gene expression and assembly of nephrin in human diabetic nephropathy.
        Kidney Int. 2004; 65: 2193-2200
        • Kandasamy Y.
        • Smith R.
        • Lumbers E.R.
        • Rudd D.
        Nephrin—a biomarker of early glomerular injury.
        Biomark Res. 2014; 2: 21
        • Fornoni A.
        • Jeon J.
        • Varona Santos J.
        • et al.
        Nephrin is expressed on the surface of insulin vesicles and facilitates glucose-stimulated insulin release.
        Diabetes. 2010; 59: 190-199
        • Ruggenenti P.
        • Porrini E.L.
        • Gaspari F.
        • et al.
        Glomerular hyperfiltration and renal disease progression in type 2 diabetes.
        Diabetes Care. 2012; 35: 2061-2068
        • Sato Y.
        • Wharram B.L.
        • Lee S.K.
        • et al.
        Urine podocyte mRNAs mark progression of renal disease.
        J Am Soc Nephrol. 2009; 20: 1041-1052
        • Fukuda A.
        • Wickman L.T.
        • Venkatareddy M.P.
        • et al.
        Angiotensin II-dependent persistent podocyte loss from destabilized glomeruli causes progression of end stage kidney disease.
        Kidney Int. 2012; 81: 40-55
        • Kriz W.
        • Lemley K.V.
        A potential role for mechanical forces in the detachment of podocytes and the progression of CKD.
        J Am Soc Nephrol. 2015; 26: 258-269
        • Pozzi A.
        • Zent R.
        Integrins in kidney disease.
        J Am Soc Nephrol. 2013; 24: 1034-1039
        • Mundel P.
        • Heid H.W.
        • Mundel T.M.
        • et al.
        Synaptopodin: an actin-associated protein in telencephalic dendrites and renal podocytes.
        J Cell Biol. 1997; 139: 193-204
        • Wegener K.L.
        • Partridge A.W.
        • Han J.
        • et al.
        Structural basis of integrin activation by talin.
        Cell. 2007; 128: 171-182
        • Lugano R.
        • Vemuri K.
        • Yu D.
        • et al.
        CD93 promotes β1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis.
        J Clin Investig. 2018; 128: 3280-3297
        • Tosi G.M.
        • Caldi E.
        • Parolini B.
        • et al.
        CD93 as a potential target in neovascular age-related macular degeneration.
        J Cell Physiol. 2017; 232: 1767-1773
        • Lee M.
        • Park H.S.
        • Choi M.Y.
        • et al.
        Significance of soluble CD93 in type 2 diabetes as a biomarker for diabetic nephropathy: integrated results from human and rodent studies.
        J Clin Med. 2020; 9: 1394
        • Wilson P.C.
        • Wu H.
        • Kirita Y.
        • et al.
        The single-cell transcriptomic landscape of early human diabetic nephropathy.
        Proc Natl Acad Sci U S A. 2019; 116: 19619-19625
        • Angerer P.
        • Simon L.
        • Tritschler S.
        • et al.
        Single cells make big data: new challenges and opportunities in transcriptomics.
        Curr Opin Syst Biol. 2017; 4: 85-91
        • Hicks S.C.
        • Townes F.W.
        • Teng M.
        • Irizarry R.A.
        Missing data and technical variability in single-cell RNA-sequencing experiments.
        Biostatistics. 2018; 19: 562-578
        • Kiselev V.Y.
        • Andrews T.S.
        • Hemberg M.
        Challenges in unsupervised clustering of single-cell RNA-seq data.
        Nat Rev Genet. 2019; 20: 273-282
        • Wu H.
        • Kirita Y.
        • Donnelly E.L.
        • Humphreys B.D.
        Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis.
        J Am Soc Nephrol. 2019; 30: 23-32
        • Wu H.
        • Malone A.F.
        • Donnelly E.L.
        • et al.
        Single-cell transcriptomics of a human kidney allograft biopsy specimen defines a diverse inflammatory response.
        J Am Soc Nephrol. 2018; 29: 2069-2080